
Massive Data Management in Parallel Machines

Raymond Paul, M. Farrukh Khan, Ishfaq Ahmad, Omran Bukhres,
Imran Ghafoor, Amrit Goel and Arif Ghafoor

Abstract

In this paper we discuss issues related to the design
and and usage of database management of massive
amounts of data i n parallel environments. The issues
include the placement of the data in the memory , file
systems, concurrent access t o data, eflects on query
processing, the implications of specific machine archi-
tectures, and the peculiarities of specific parullel sys-
tems . Since not all parameters are currently amenable
t o rigorous analysis, results of performance studies are
highlighted wherever deemed appropriate '.

1 Introduction

Current real-world applications demand database
size and processing capabilities beyond the capacity
of the largest and fastest transaction processing sys-
tems available today. Since management,, collection,
processing and distribution of information has a ma-
jor role in our lives, we can expect that fiit,ure ap-
plications will demand even more computing power.
Today, some of the leading such applications include:
handling of scientific data from satellites and space
missions, processing of the data for the human genome
project, handling databases for national administra-
tion eg. social security, management of multimedia
data, utilization of multidatabases spanning across
corporations or other organizations, collecting data
and performing simulations for studying changes in

'This research was supported in part by the National Science
Foundation under grant number 8913133Al-ECD, awarded to
School of Elect. Engr., Purdue University.
R. Paul is with OEC-US Army, Alexandria, VA, 22302.
M. F. Khan and 0. Bukhres are with Dept. of Computer Sc.,
Purdue University, W. Lafayette, IN, 47907.
I. Ahmad is with Dept. of Comp. Sc., Hong Kong University
of Science and Technology, Hong Kong.
I. Ghafoor is with Dept. of Business and Computing, Bronx
Community College, City University of New York, The Bronx,
New York.
A. Goel is with Dept. of Elect. and Comp. Engr., Syracuse
University, Syracuse, New York, 13244.
A. Ghafoor is with School of Electrical Engr., Purdue Univer-
sity, W. Lafayette, IN, 47907.

the global climate, data handling for weather forecast-
ing and environmental studies, etc.

The advent of high-performance scalable parallel
computers has provided a hope for handling some of
the problems generated by these and other potentially
massive databases. Despite the existence of the hard-
ware, however, it is far from clear how the power of
this breed of parallel machines can be harnessed to
solve the problems at hand. To date, most of the
work on parallel machines has focussed on producing
efficient algorithms for the solution of computationally
intensive problems. Very little work has coupled this
emphasis on solution of computationally challenging
problems with the concomitant, and sometimes con-
tradictory, demands placed by data-intensive applica-
tions, such as those found in massive databases. In
order to tackle the above problems we need a care-
ful evaliiat,ion of the following factors, among others:
hardware architecture, file and data structures, data
layout, and distribution schemes, and transaction pro-
cessing models.

Figure 1 shows a layered organization of the issues
mentioned above. Each of the higher levels in the lay-
ered organization depends on all the levels below it.
The lowest, level dealing with machine architecture is-
sues determines what, sort. of file structures and file
access methods are possible on a given processor in-
terconnection, memory, and communication system.
File organization influences the kind of data struc-
tures that can be built for manipulating data in these
files. Algorithms are entwined with the data struc-
tures implementable on the underlying machine. Al-
gorithm A may perform worse than algorithm B for
a given archit,ecture, but algorithm B may give better
results than algorithm A on other machine architec-
tures. Other factors that, may influence the choice
of data structures include the size of data set, reli-
ability requirements, cost. etc. In general, designers
assume some kind of lower level layers when design-
ing higher level layers, such as algorithms for conciir-
rency control in database transaction processing sys-
tems. An example of such dependence is the design of
main-memory systems which allow the optimization

326
0730-3 157194 $04.00 0 1994 IEEE

Figure 1: Layered Semi-dependencies of Different Sec-
tions of a Parallel Database Systems

of data-structures and algorithms to take advantage
of the available main-memory and the lack of disk ac-
cesses. The layered organization is not very rigid. Of-
ten a machine may have some algorithms built in the
hardware. An example of this is the parallel hardware
sorter built described in [l].

The discussion in this paper follows the layered or-
ganization of Figure 1.

the systems are also known as database machines. Sev-
eral database machines have been developed in order
to handle massive amount of data or to have a high
transaction processing rates. There can be various
types of parallelization that influences the design, such
as inter-query, intra-query and intra-operation paral-
lelization.

Granularity, which is a measure of the amount of
computation in a software process, is another major
design parameter for parallel machines. Parallel ma-
chines may be looked upon as a collection of processor-
memory pairs. These machines can either be coarse-
garined, fine-grained, or medium-grained.

Scalability of a parallel system determines its per-
formance when the number of processors used for a
given application is increased, or for a fixed number of
processors, the problem size is increased. Scalability
determines the matching between a computer archi-
tecture and a give application. For different combina-
tions of problem and machines size, the performance
analysis may be different. Therefore, for very large
database application, scalability measure is an impor-
tant factor for determining the suitability of an archi-
tecture.

Interconnection topology is another design issue in
parallel architectures. A detailed treatment of how
different, topologies influence the design of parallel al-
gorithms for those topologies is given in [2]. Static
networks are usually employed in distributed-memory
message passing The interconnection network affects
the performance of communication primitives. In
database applications, it is important to analyze the
patterns of communication and then choose an inter-
connect,ion net,work accordingly.

Memory Sharing refers to the way the programmer
views the memory of the system. A shared memory

2 Architectural Issues in Parallel
Databases

The architecture of the parallel computer is critical
in the selection of data layout schemes and the kind
of algorithms that can be employed to solve database
problems. In particular, we are concerned about the
issues of data placement and the performance of paral-
lel algorithms available with the given data structures.

A number of considerations prevail in the construc-
tion of parallel architectures for database processing
use. These are described in the following.

A choice between general architectures and special
purpose architectures has to be made. Special pur-
pose architectures are designed to serve a particular
problem domain, such as image processing, real-time
processing, or pure number crunching. When an archi-
tectures is tailored to solve database related-problems,

system provides a single address space and a single co-
herent. memory. Here, communication is done implic-
itly by directly accessing a common memory. In anon-
shared memory system, on the other hand, each pro-
cessor has its own local memory. A non-shared mem-
ory system, which employs distributed memory, can
be viewed as a collection of processor memory pairs
where Communication is done using explicit message
passing. Shared-memory system can employ either
centralized memory or a distributed memory. Exam-
ples of distributed shared memory include the DASH
and KSR systems [3] and Cray T3D. Since the access
to the memory (read/write) can be the major factor
affecting the performance of a parallel database, this
is extremely important consideration for database ap-
plications and is elaborated further later.

327

Control mechanisms is important architectural
component. Control mechanism determines the tim-
ing and synchronization of execution of instruc-
tions of the programs. Based on this, parallel ma-
chines are conventionally classified as SIMD (single-
instruction, multiple-data), or MIMD (multiple-
instruction, multiple-data).

Examples of SIMD computers include CM-2, Mas-
Par MP-1 nd MP-2, and DAP610. Examplesof MIMD
computers include Thinking Machines CM-5, Intel
Paragon, KSR-1, nCube, etc. Parallel database sys-
tems have been developed on both SIMD and MIMD
architectures [5].

Mapping of tasks and data within a machine greatly
impacts the performance of the machine [l l , 71. Map-
ping deals with the distribution of different tasks gen-
erated by an algorithm among the nodes of the system.

I/O Capabilities is another crucial factor for parallel
processors. Current disks are very slow as compared
to the CPU and the main memory. One proposed so-
lution is to keep the entire database in the main mem-
ory [SI. However, this is a very expensive solution and
precludes its use for all but the smallest databases.
Also the trend has been that CPU and main memory
bandwidth has been increasing much faster than disk
memory bandwidth. Another solution is paralleliza-
tion of 1 / 0 has been proposed as the solution to this
problem [lo, 91. This can be achieved using disk ar-
rays where the data is not placed on just a few high
density disks. Rather, it is distributed over a large
number of disks. This allows parallel access to dif-
ferent segments of data, thus increasing the effective
bandwidth of I/O. In order to alleviate the burden of
1/0 from the main processors, the use of special 1/0
processors is a common practice in parallel processors.
For example, the Intel Paragon [6], whkh is an MIMD
machine based on a 2D mesh topology, has arrays of
1/0 processors on the right and left edges of the mesh.
Similarly, the Thinking Machines CM-5 which is also
an MIMD machine provides dedicated 1/0 proc.essor.
The number of 1/0 processors can be scaled with in-
creasing number of processing nodes.

From memory usage point of view, architedure
can be classified as main memory databases, shared-
memory architectures and I/O shared disk architec-
tures. These architectures have their pros and cons in
terms of performance and database applications.

3 Data Structures and Data Organi-
zations for Parallel Databases

Some important data structures that have been
have been employed in the efficient access of data in-
clude, lists, and hashing. From parallel processing
point of view, a number of concurrent algorithms for
searching have been proposed for unbalanced and bal-
anced trees. The usual mechanism to enforce non-
interference between different threads of execution has
been the use of locks. Concurrent algorithms for re-
balancing or deletion from B-trees are generally very
complicated.

The simulations results have revealed that skip lists
show almost linear speedup with the increase in the
number of concurrent threads of execution. The num-
ber of locks blocked is proportional to the number of
locks held, which is proportional to the ratio of con-
current writ,ers to the elements in the data structure.

With these results, it seems that skip lists pro-
vide efficient, concurrent, algorithms for use in parallel
databases. The algorithms tend to be simpler than
the corresponding ones using B-trees.

In the implementation of hash tables, it is required
to implement the operations of inserting, deleting, and
searching keys. IJsnally the hash table is stored in a
manner that, makes the distribution of data even over
the entire system. If possible, each data element. is
associated with a single processor. Linear probing is
used for resolving collisions, since this reduces com-
munication costs in the system. The performance of
the hash table should take into account the variance
in the type of load that a system may be subjected to,
as well as the commiinication overheads. These fac-
tors make the performance analysis of parallel hash
systems much harder than conventional systems. [13]
provides simple analysis of parallel hashed data sys-
tem. The simulation study in [13] shows that per-
formance of hash table with linear probing when the
hash table is fully loaded is much worse than the per-
formance of the hash table with 80 percent load when
the only operation considered is insert . Search also
has performance similar to insert.

4 File Manipulation Strategies

It, is desirable to provide fast access and high band-
width between the data stored on disks and the main
memories associated with the processors. Files can be
allocated as either fired blocks, where all blocks are of
the same size (eg. IJNIX), or ezient based systems,

328

where allocation of data is as a few large and vari-
able chunks of disk space. Fixed block systems have
the disadvantage of discontiguous allocation of data on
disk, and an excessive amount of book-keeping data.
Extent based systems may thus provide higher per-
formance. Performance studies which indicate the su-
periority of certain allocation policies are reported in
[14]. In particular, striping across disks with contigu-
ous allocation showed 250% improvement over policies
without disk striping and contiguous allocation.

If the nature of data is non-static, as is the case
when large number of updates are performed, or the
nature of the system is unknown, provision should be
made for even distribution of data (load-balancing)
over the entire system via data reorganization. This
load-balancing should not entail recompiling of the
programs running on the system. This can be done
by having associative access to the data in question.

A global index is kept indicating the placement of
relations on the nodes. The index structure can be
either B-tree based, or hash based. B-trees take more
space, but range queries are more efficient. The global
index is replicated on each node, so this may cause
problems in scaling, because of consequent overhead
~ 5 1 .

Signature files are useful for associative retrieval
on formatted or unformatted data files [16]. The
major advantages of signature files over some other
structures such as grid files or multi-dimensional hash
structures are that the associative searches may be
conducted over a large number of dimensions and this
number may even vary for different records within the
same file. Auxiliary files, called signature files, contain
database record abstractions called signatures. Exten-
sions to signature files in order to increase the perfor-
mance of signature file query processing are possible.

Clustered surrogate files [17] are also used as an
indexing scheme through a special data word, called
the concatenated code word, or CCW for short. These
CCW’s constitute a surrogate fi le, which is small in
size and simple to maintain through a small number
of core operations. Considerable savings of time may
be realized by performing related operations on the
CCW surrogate files before performing them on the
actual data files, which are often very large. Since
the structure of surrogate files is compact and regular,
mapping these files to different parallel architectures
is not very complex.

5 Parallel Query Processing

Parallel query processing is an essential part of con-
structing any parallel database system, and can ac-
count for important performance improvements. In
this section we look a t work in parallel algorithms for
database query processing. Parallelization of query
processing provides opportunities for inter-query par-
allelism, intra-query parallelism, as well as intra-
operation parallelism.

In inter-query parallelism, different queries are ex-
ecuted in parallel on different processors. Intra-query
parallelism involves the parallel execution of different
sub-operations within the same query. Intra-operation
parallelism refers to the even more fine-grained paral-
lelism, where single operations within queries are dis-
tributed over more khan one processor for concurrent
execution.

We assume that the operations to be performed on
partitioned data in a parallel database consist of the
basic relational algebra operators, or their derivatives.
These include selection, projection, union, set differ-
ence, Cartesian product, intersection and various kinds
of join operations performed on the database relations.
Researchers have generally concentrated on select and
join operations, since these are basic and heavily used
primitives in database query processing.

Divide and conquer strategy is applied to break up
operations with a large number of tuples into smaller
chunks, assigning these chunks to different processors,
and processing the chunks in parallel. For example,
the sorting phase may be distributed over nodes such
that there is relatively low amount of of data skew
and computational load is also spread over the nodes.
Without such load-balancing, the speedup achieved is
limited due to under-utilization of the resources, and
extra overheads, such as intermediate disk saves etc.

An algorithm to increase the amount of parallelism
in the hash-join algorithm by using pipelining is pro-
posed in [MI. The hash-table for both relations A and
B is formed. Whenever a tuple is produced from either
relation, it is hashed to find the hash-key. Tuples in
the other relation with the corresponding hash-key are
compared with the new tuple. Any matching tuples
are sent to the output stream. If one of the relations
is exhausted, the tuples from the other relation are no
longer inserted in the hash-table. This is so because
only the first, hash table is used in processing the join
from now on i.e. it becomes like the non-pipelined
version of the hash-join algorithm. Besides pipelining
this algorithm also offers the advantage of being sym-
metric with respect to its operands. This eliminates
the need to compare and order the operands before

329

inputting them to the hash-join algorithm.
Most algorithms to select the best strategy in per-

forming joins involving more than one relation first
form an intermediate representation, called the jo in-
tree. Optimizations are performed on the tree before
feeding the treenodes to the join algorithms. This is
done so in GAMMA [19], PRISMA [20, 181 and other
parallel database systems.

One may not always have the choice to select the
shape of the tree, and the edges may have different
costs, affecting the tree that is ultimately selected for
performing the joins. GAMMA prefers linear trees
with minimal total processing costs; [21] chooses to
minimize the processing time on the longest path in
the tree. The PRISMA database system combines the
choice of tree with pipelining hash-join and distribut-
ing expensive operations over more processor nodes.

Algorithms have been proposed that perform joins
relatively well even in the presence of data skew. One
such algorithm is described in [22]. The output of
the sort phase of the sort-merge algorithm is prepro-
cessed before the join/merge phase. The largest skew
elements are identified and are assigned to an optimal
number of processors. This helps in load-balancing for
the join phase. The algorithm is also reported to be
robusi with respect to data skew and the number of
processors.

6 Performance Issues

In this section, we describe some of the fundamen-
tal issues that need to addressed for evaluating the
performance of parallel database systems. The major
goals of a parallel system are to obtain linear speedup
and scalability. The speedup refers to the ratio of the
execution time of a task on a serial machine to the ex-
ecution time of the same task on a parallel machine. A
linear speedup means that this ratio is N if the system
is made N times larger. Speediip essentially measures
how fast a fixed-size task is executed if the size of
the system is increased. Scalability on the other hand
measures how a system performs if both the size of the
task and system is increased. Ideally, one would like
to to execute an N-times larger task on an N-times
larger system with the same time as the original task
on the original system. In parallel databases, batch
speedup is one of the most common measure. The
batch speedup of a system measures improvements in
the response times of large query processing as the
number of processing nodes is increased to perform
parallel query processing. This speedup is obtained
by exploiting though multiprocessing the parallelism

inherent within a complex query. Scalability of paral-
lel databases is measured in two ways. The first way
is to measure the increase in transaction processing
throughput as the number of processing nodes and
the size of database is increased. Since each transac-
tion is usually a small task without much parallelism,
enhancement in throughput is obtained by scheduling
transactions to different processing nodes. The sec-
ond way of measuring scalability is to study how the
response time of large batch programs, such as large
decision-support queries, as the processing nodes and
database size is increased. This is obtained by using
more processing nodes to process a complex query,
without increasing the workload of a single processing
node.

In reality, linear speediips and scalability are dif-
ficult to obtain due to a number of reasons. These
include the inter-processor communication overhead,
synchronization, initiation and termination of parallel
tasks, etc.

7 Conclusions

It is clear from the foregoing sections that there
are a large number of -factors that warrant careful at-
tention when designing parallel database systems for
very large amoiint,s of data. Among them are: the
physical architecture of processor, memory, disks and
the interconnection network; physical and logical lay-
out and distribution of data, and the file system em-
ployed; the kinds of data structures used in accessing
and processing the data; selection of algorithms for
the performance on parallel machines of traditional
database operations such as sorting, performing joins,
projections etc.

Architectural decisions affect the amount of differ-
ent kinds of parallelism that can be obtained in shared-
disk or shared-nothing systems. Shared-disk systems
provide advantages of load balancing and easier man-
agement. Shared-nothing systems provide the benefits
of scalability and lower communication costs. Poten-
tial for bottlenecks is also reduced in shared-nothing
systems.

Further issues that need to be considered include
the routine operations such as reload, unload, and re-
organization issues; heterogeneity issues; performance
measurements for a mix of complex query work loads,
and the relative advantages of parallel synchronous
pipelining versus parallel asynchronous pipelining in
the processing of database queries. Most of these
warrant further research before definitive opinions are
reached on them.

330

References

[l] Browne, J . C., Dale, A. G., Leung, C., and Jen-
evein, R., “Parallel Multi-stage 1 / 0 Architec-
ture with Self-Managing Disk Cache for Database
Management Applications”, in Proceedings of
Database Machines: Fourth International Work-
shop, Bahamas, March 1985.

(21 Leighton, F. T., Introduction t o Parallel Algo-
rithms and Architectures: Arrays, &es, Hyper-
cubes, Morgan Kaufmann Publishers, 1992.

[3] Bell, G., “Ultracomputers, A Teraflop Before
its Time”, Communication of the ACM, August

[4] Baru, C. K., Frieder, O., Kandlur, D., and Se-
gal, M., “Join on a Cube: Analysis, Simulation
and Implementation”, in Database Machines and
Knowledge Base Machines, Kitsuregawa, M. and
Tanaka, H. (editors), Kluwer, 1987.

[5] Frieder, O., “Multiprocessor Algorithms for
Relational-Database Operators on Hypercube
Systems”, IEEE Computer, 13-28, Nov. 1990.

[6] Intel, Paragon XP/S Product Overview Super-
computer System s Division, Intel Corporation,
Beaverton, OR, 1991.

[7] Bowen, N., Nikolaou, C., and Ghafoor, A., “On
the Assignment Problem of Arbitrary Process
Systems to Heterogeneous Distributed Compiit-
ing Systems”, IEEE Ransactions on Computers,
41, 3, 257-273, March 1992.

[8] Leland, M. D. P., and Roome, W. D., “The Sil-
icon Database Machine”, in The Proceedings of
the 4th International Workshop on Database Ma-
chines, Bahamas, March 1985.

[9] Patterson, D., Gibson, G., and Katz, R., “A
Case for Redundant Arrays of Inexpensive Disks
(RAID)”, in Proceedings of the ACM SIGMOD
Conference, 109-116, Chicago, June 1988.

[lo] Kim, M., “Synchronized Disk Interleaving”,
IEEE Tran. on Comp. C-35, 11, November 1986.

[ll] Ahmad, I. , Ghafoor, A., “Semi Distributed Load
Balancing for Massively Parallel Millticomputer
Systems”, IEEE Dansactions on Software Engi-
neering, 17, 10, 987-1006, October 1991.

[12] Yen, I., Leu, D., and Bastani, F., “Hash Ta-
ble and Sorted Array: A Case Study of Multi-
Entry Data Structures in Massively Parallel S y s
tems”, in Proceedings of the Third Symposium on
the Frontiers of Massively Parallel Computation,
College Park, MD, October 1990.

[13] Seltzer, M., Stonebraker, M., Read Optimized
File System Designs: A Performance Evalira-
tion, in Proceedings of the IEEE 7th International
Conference on Data Engineering, 1991.

1992, pp. 27-47.

[14] Khoshafian, S. , and Valduriez, P., “Parallel
Query Processing of Complex Objects”, in Proc.
of the Fourth Int. Con. on Data Engr., Los An-
geles, CA, February, 1988.

[15] Faloutsos, C. and Christodoulakis, S., “Descrip-
tion and Performance Analysis of Signature File
Methods for Office Filing”, ACM Dansactions on
Ofice Information Systems, 5, 3, July 1987.

[16] Chung, S. M., “Parallel Relational Operations
Based on Clustered Surrogate Files”, in Proceed-
ings of the Third Symposium on the Frontiers
of Massively Parallel Computation, College Park,
MD, Oct,ober 1990.

[17] Wilschut, A., and Apers, P., “Pipelining in Query
Execution”, in Proceedings of the PA RBASE-90
Conference, Miami, FL, March 1990.

[18] DeWitt, D., Gerber, R. H., Graefe, G., Heytens,
M. L., Kumar, K. B., and Muralikrishna, M.,
“GAMMA - A High Performance Dataflow
Database Machine”, in Proceedings of the 12th In-
ternational Conference on Very Large Databases,
Kyoto, Japan, Angust, 1986.

[19] Apers, P., Hertzberger, B., Hulshof, B., Oer-
lemas, H., and Kersten, M., “PRISMA, a Plat-
form for Experiments with Parallelism”, in Par-
allel Database Systems, Pierre America (Ed.),
Springer-Verlag, 1990.

[20] Botlorik, P. and Riordon, J . S., “Heuristic Al-
gorithms for Dist?ributed Query Processing”, in
Procccdings of the First International Symposium
on Databases in Parallel and Distributed Systems,
Ailstsin, TX, December 1988.

[21] Wolf, J . , Dias, D., and nirek, J., “An Effec-
tive Algorithm for Parallelizing Hash Joins in the
presence of Data Skew”, Proceedings IEEE 7th
International Conference on Data Engineering,
1991.

[22] DeWitt,, D., et. al, “The GAMMA Database Ma-
chine Project?, IEEE Ran. on Knowlwdge and
Data Engineering 2, 1 , 44-62, March 1990.

[23] DeWitk, D., and Gray, Jim, “Parallel Database
Syskms: The Futme of High Performance
Database Syst,ems”, Communications of the
ACM, June 1992.

[24] Driscoll, J . , Gabow, H., Sharairman, R., and Tar-
jan, R., “Relaxed Heaps: An Alternative to Fi-
bonacci Heaps with Applications to Parallel Com-
putation”, Communications of the ACM 31, 11,
1343-1354, November 1988.

[25] Ellis, C. S . , ‘‘Conciirrency in Linear Hashing”,
ACM Transactions on Database Systems 12, 2,
195-217, June 1987.

33 I

